Lecture: 1-4: Exponential Functions
Example 1: Suppose you are offered a job that lasts one month. Which of the following methods of payment do you prefer?
(a) One million dollars at the end of the month.
total pay: $\$ 1,000,000$
(b) One cent the first day, two cents the second, four cents the third, etc.
day 1: 1^{4} etc... day 28 is 2^{27} cents
day 2: $2^{6}=2^{1}$
day 3: $4^{4}=2^{2}$
day 4: $8^{4}=2^{3}$

Laws of Exponents If a and b are positive numbers and x and y are real numbers, then
(a) $e^{2} e^{x}=e^{\mathbf{2 + x}}$
(b) $\left(e^{5 x}\right)^{2}=e^{5 x \cdot 2}=e^{10 x}$
(c) $\frac{5^{2}}{5^{x}}=5^{2-x}$
$\underbrace{\operatorname{not} e^{2 x}}_{\text {Example 3: Graph the following exponential functions. }} \quad \underset{e^{25 x^{2}}}{\text { NOT } e^{2}}$
reflect

$$
y=e^{x} \text { over }
$$

the x-axis and move ups.
(a) $f(x)=5-e^{x}$

(b) f

Example 4: Find the exponential function $f(x)=a \cdot b^{x}$ who passes through the points $(1,6)$ and $(3,24)$.

$$
\begin{aligned}
& (1, b) \Rightarrow b=a \cdot b^{\prime} \Rightarrow a=6 / b \text { (input this) } \\
& (3,24) \Rightarrow 24=a \cdot b^{3} \\
& 24=6 / 6 \cdot b^{3} \quad \longrightarrow b=2 \quad(b \text { cant be }-2) \\
& 24=6 b^{2} \\
& 4=b^{2} \\
& a=6 / b=6 / 2=3 \\
& f(x)=3 \cdot 2^{x} \leftarrow \begin{array}{l}
\text { your final } \\
\text { answer is }
\end{array} \\
& \text { your function. }
\end{aligned}
$$

Example 5: The half-life of strontium-90 is 25 years, meaning half of any given quantity of strontium- 90 will disintegrate in 25 years.
(a) If a sample of strontium- 90 has a mass of 100 mg , find an expression for the mass $m(t)$ that remains after t

$$
m(t)=100 \cdot(1 / 2)^{(t / 2 s)}
$$

$$
\begin{aligned}
& \text { (b) Find the mass remaining after } 40 \text { and } 80 \text { years. }
\end{aligned}
$$

Generally speaking, inverse functions are functions that "undo" one another. For example, if I square a number, to undo this operation I take a square root. Thus, $f(x)=x^{2}$ and $g(x)=\sqrt{x}$ are inverse functions. There are some technicalities to this relationship, but the basic idea that inverses "undo" each other is a good place to start.
if $f(x)=x+2, f^{-1}(x)=x-2$
if $f(x)=x / 2, f^{-1}(x)=2 x$
if $f(x)=x^{3}, f^{-1}(x)=\sqrt[3]{x}$

Defintion: A function f is called one-to one if it never takes on the same values twice. That is,

$$
f\left(x_{1}\right) \neq f\left(x_{2}\right) \quad \text { whenever } \quad x_{1} \neq x_{2}
$$

not one-to- ore $f(x)=x^{2}$

has the same
y-value at $x= \pm 1$
(and move)

Horizontal Line Test A function f is one-to-one if and only if no horizontal line intersects its graph more than once.

Example 6: Are the following functions one-to-one?
(a) $f(x)=x^{3}$
(b) $f(x)=x^{2}$
(c) $f(x)=e^{x} \quad$ Yes

Day 4
2

Definition: Let f be a one-to-one function with domain A and range B. Then its inverse function f^{-1} has domain B and range A. It is defined by

$$
f^{-1}(y)=x \text { if and only if } f(x)=y
$$

for any y in B.

One consequence of the definition above are the following cancellation equations. $f(x)=x^{3}, f^{-1}(x)=\sqrt[3]{x}$

- $f\left(f^{-1}(x)\right)=x$ for all x in $B \quad$ ex: $f\left(f^{-1}(x)\right)=f(\sqrt[3]{x})=(\sqrt[3]{x})^{3}=x<$ note $f \forall f^{-1}$
- $f^{-1}(f(x))=x$ for all x in \mathbf{A} er: $f^{-1}(f(x))=f\left(x^{3}\right)=\sqrt[3]{\left(x^{3}\right)}=x \quad$ Cancel in some
Example 7: If $f(1)=5, f(3)=7$, and $f(8)=-10$ find the following.
(a) $f^{-1}(7)=3$
What x gives
$u s$ a y-value of 7 ?
(b) $f^{-1}(5)=1$
$Q: f(x)=7$?
Example 8: Find the inverse of the following functions. Give the domain and range of the inverse.
(a) $f(x)=(x+2)^{3}-5$
(b) $f(x)=\frac{2 x+3}{x-5}\left[\begin{array}{l}D: \mathbf{x} \neq \mathbf{5} \\ R: y \neq \mathbf{2}\end{array}\right]$
(1) $y=(x+2)^{3}-5$

$$
y+5=(x+2)^{3}
$$

$$
\sqrt[3]{y+5}-2=x
$$

$$
\begin{aligned}
& y=\frac{2 x+3}{x-5} \\
& y(x-5)=2 x+3 \\
& x y-5 y=2 x+3 \quad \leftarrow \begin{array}{l}
\text { get } x \text { sss on the } \\
\text { same side }
\end{array} \\
& x y-2 x=3+5 y \\
& x(y-2)=3+5 y \leftarrow \text { factor out } x \\
& x=\frac{3+5 y}{y-2} \quad \begin{array}{l}
D: x \neq 2 \\
R: y \neq 5
\end{array}
\end{aligned}
$$

(2) solve for $x \rightarrow$ this forces you to undo stuff in the "right "order.

$$
\sqrt[3]{y+5}=x+2
$$

$$
\text { (3) } f^{-1}(x)=\sqrt[3]{x+5}-2
$$

Logarithmic Functions

If $b \neq 1$, the exponential function $f(x)=b^{x}$ is either increasing or decreasing is therefore one-to-one by the Horizontal Line Test. Thus, this function has an inverse function which we call the logarithmic function with base b and is denoted $\log _{b} x$. For $b=e$ sketch a graph of $f(x)=e^{x}$ and $f^{-1}(x)=\log _{e} x=\ln x$.

Observations:
$f(x)=e^{x}$ has $D:(-\infty, \infty), R:(0, \infty)$
$f(x)=\ln x$ has $D(0, \infty) R(-\infty, \infty)$
this means in x cant do negatives (or zero) as inputs, but it can give negatives as outputs.

As the functions $f(x)=b^{x}$ and $g(x)=\log _{b} x$ are inverses, we have the cancellation equations. $\left(\log _{e} x=\ln x\right.$.)
a) $f(g(x))=\frac{f\left(\log _{b} X\right)=b^{\log _{b} X}=x}{b^{x}}$ for every $x>0$
b) $g(f(x))=f\left(b^{x}\right)=\log _{\boldsymbol{b}} b^{x}=x$ for every x in \mathbb{R}

Example 10: Find the exact values of the following expressions.
a) $\log _{5} 125=\log _{5} 5^{3}=3$
b) $\ln e^{5}=5$
c) $\ln \frac{1}{e^{2}}=-2$
$5^{?}=125$ ans: 3

$$
e^{?}=e^{5}
$$

$$
e^{?}=1 / e^{2}
$$

Laws of Logarithms If x and y are positive numbers, then

1. $\log _{b}(x y)=\log _{b} x+\log _{b} y \rightarrow \underset{\sim}{w h}: \log _{b}(x y)=\log _{b}\left(b^{\log _{b} x} b^{\log _{b} y}\right)$
2. $\log _{b}(x / y)=\log _{b} x-\log _{b} y \rightarrow$ simliar to $1=\log _{b}\left(b^{\log _{b} x+\log _{b} y}\right)$
3. $\log _{b}\left(x^{r}\right)=r \log _{b} x \rightarrow \log _{b} \mathbf{X}^{4}=\log _{\boldsymbol{b}}(\mathbf{x} \times \times \mathbf{X})$

$$
\begin{aligned}
& \rightarrow \log _{b} x^{7}=\log _{b}(x \times x x)=\log _{b} x+\log _{b} y \\
& =\log _{b} x \log _{b} x+\log _{b} x+\log _{b} x \\
& =4 \log _{b} x
\end{aligned}
$$

garithms to express the following quantities as one logarithm

Example 11: Use properties of logarithms to express the following quantities as one logarithm (a) and expand the logarithm in (b).
(a)

$$
\begin{aligned}
& \log b+2 \log c-3 \log d=\log b+\log c^{2}-\log d^{3} \\
& =\log \left(b c^{2}\right)-\log d^{3} \\
& =\log \left(\frac{b c^{2}}{d^{3}}\right) \leftarrow \begin{array}{l}
\text { this is not the same } \\
\text { as } \frac{\log \left(b c^{2}\right)}{\log d^{3}} \text {, which is }
\end{array} \\
& \text { (b) } \ln \left(\frac{\sqrt{x^{2}+5(x)-3}}{(x+5)^{5}}\right)=\ln \left(\left(x^{2}+5\right)^{1 / 2}\right)+\ln (x-3)^{5}-\ln (x+5)^{2} \\
& =\frac{\frac{1}{2} \ln \left(x^{2}+5\right)+5 \ln (x-3)-2 \ln (x+5)}{\uparrow} \begin{array}{l}
\text { there is no rule for } \\
\ln \left(x^{2}+5\right) \text { or } \ln (A+B) \text {. A } \\
\text { simply cannot simplify more. }
\end{array} \\
& \text { Example 12: Solve the following equations for } x \text {. wrong. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) } \ln (x+5)-1=7 \\
& \ln (x+5)=8 \\
& e^{\ln (x+5)}=e^{8} \text { (exponentiate!.) } \\
& x+5=e^{8} \\
& x=e^{8}-5 \int_{\text {will want exact }}^{\text {weblessign }} \begin{array}{l}
\text { whwers like this. }
\end{array} \\
& x=e^{8}-5 \int_{\text {will want exact }}{ }^{\text {note, webssign }} \begin{array}{l}
\text { whwers like this. }
\end{array}
\end{aligned}
$$

No decimals unless it asks!
Example 13: Find the domain of the following functions.
(b) $e^{2 x-5}+4=10$
denom cant be
(a) $f(x)=\frac{1-e^{x^{2}}}{1-e^{1-x^{2}}} \downarrow$ zen

$$
\begin{aligned}
1-e^{1-x^{2}}=0 & \Rightarrow 1=e^{1-x^{2}} \quad \text { leave } \\
& \Rightarrow \ln 1=1-x^{2} \quad \text { these } \\
& \Rightarrow 0 \text { out } \\
& \Rightarrow x^{2}=1 \Rightarrow x= \pm 1
\end{aligned}
$$

(b) $g(x)=\sqrt{e^{x}-2}$ Just be positive

$$
\begin{aligned}
& e^{x}-2 \geqslant 0 \\
& e^{x} \geqslant 2 \\
& x \geqslant \ln 2 \\
& D:[\ln 2, \infty)
\end{aligned}
$$

Day 4

$$
\text { so } D:(-\infty,-1) \cup(-1,1) \cup(1, \infty)
$$

Common Mistakes and Misconceptions
Example 14: Are the following statements true or false? If either case, explain why. If possible, change the false statements so that they are a true statement.
(a) $(a+b)^{2}=a^{2}+b^{2}$

$$
\begin{aligned}
(a+b)^{2} & =(a+b)(a+b) \\
& =a^{2}+a b+b a+b^{2} \\
& =a^{2}+2 a b+b^{2}
\end{aligned}
$$

False!
in words: exponents do not distribute over addition!
(b) $\sqrt{x^{2}+4} \underbrace{x+2}$ check $\mathrm{X}=1 \rightarrow \sqrt{1^{2}+4}=1+2$? False! This thing just doesnit simplify!
(c) $\frac{a+b}{c+d}=\frac{a}{c}+\frac{b}{d}$ is $\frac{1+2}{2+2}=\frac{1}{2}+\frac{2}{2} \leftarrow \frac{3}{2}$

False!
$\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$
This is true! Common denom \rightarrow add numerators
(e) $\ln (x+y)=\ln x+\ln y$ Try say $x=y=1$

False!

$$
\begin{aligned}
& \ln (1+1)=\ln (1)+\ln (1) ? \\
& \ln 2=0+0 \text { No }
\end{aligned}
$$

(f) $\frac{\ln x}{\ln y}=\ln \left(\frac{x}{y}\right) \leftarrow=\ln x-\ln y$ Try $e=x=y$

False $\quad \begin{aligned} \text { (g) } \ln (x-y)=\ln \left(\frac{x}{y}\right)\end{aligned} \quad \begin{aligned} \frac{\ln e}{\ln e} & =\ln \left(\frac{e}{e}\right) \\ 1 / 1 & =\ln (1) \\ 1 & =0\end{aligned}$
Fake. Try $x=y=e \rightarrow \ln (e-e)=\ln ((/ e)$

$$
\ln (0)=\ln 1
$$

Tundet. $=0$ NO!
(h) $f^{-1}(x)=\frac{1}{f(x)}$

False! $f^{-1}(x)$ means "inverse function" not $1 / f(x)$

$$
y_{f(x)}=(f(x))^{-1}
$$

(i) $f^{2}(x)=(f(x))^{2}$

Day 4

